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Test of FAST TCP over Abilene

• Production circuit (2.5 Gb/s) saturated for 30 minutes

– The circuit from the Abilene core T-640 router in Atlanta

(ATLA) to the SoX GigaPoP

• No use of QoS techniques

• No fancy AQM (default drop-tail discipline was used)

• No adverse effects on conventional traffic

– No losses

– An increase of delay by relatively stable 5–6ms
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Test Sites: Five Throughput Continental US

SoX Southern Crossroads GigaPoP in Atlanta

PNW Pacific Northwest GigaPoP in Seattle

PSC Pittsburgh Supercomputing Center in Pittsburgh

NC-ITEC North Carolina Internet2 Technology Evaluation Cen-

ter in Raleigh

STTL The measurement rack in a Qwest PoP next to the Abi-

lene core router in Seattle
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Test Machines: Eight

fast1, fast2 a Linux 2.4.20 machine with FAST TCP kernel

patches, at SoX

fast3 a Linux 2.4.20 machine with conventional TCP, at SoX

fast4 a Linux 2.4.20 machine with FAST TCP kernel patches,

at NC-ITEC

fast5 a Linux 2.4.20 machine with FAST TCP kernel patches,

at PNW

fast6 a Linux 2.4.20 machine with conventional TCP, at PSC

gigatcp1 a FreeBSD 4.3-RELEASE machine with conventional

TCP, at SoX

nms1-sttl a FreeBSD 4.6-RELEASE machine with conventional

TCP, at STTL
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Test Paths: Four

path1 nms1-sttl → gigatcp1 (stock FreeBSD Reno),

path2 fast4 → fast1 (Linux with FAST patches),

path3 fast5 → fast2 (Linux with FAST patches),

path4 fast6 → fast3 (stock Linux Reno).

• Individual bottlenecks: 1Gb/s at sender NIC (and before re-

ceiver)

• Collective bottleneck: 2.5Gb/s at OC-48 from ATLA to SoX
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Test Methodology

• One TCP connection on each path

• Staggered start (one connection per 15 minutes)

• Unlimited supply of data

– Memory-to-memory copy

– Three connections congestion-limited

– One connection limited by CPU speed on sender—to mea-

sure loss and delay for cross-traffic

• Throughput and delay measurements on all paths
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Measuring Delay

• FAST TCP patches log kernel messages with various param-

eters of internal state

• For non-FAST connections, a custom tool was used to mea-

sure delay

• Same tool also used for FAST connections, so these come

with two sets of data
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Custom Throughput and Delay Measurement
Tool

• Client/server architecture

• Client requests window size and I/O block size

• Client sends blocks of data with timestamps in the beginning

• Server echoes timestamps

• Client prints machine-readable statistics

• Source code available at

http://www.internet2.edu/˜shalunov/i2perf/
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Baseline Tests

• Conducted on each path sequentially

• No temporal overlap

• path1 is limited by CPU speed

• The rest get good performance

• Plots are in the paper but not this talk
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Concurrent Test Schedule

Test conducted on Nov 11, 2003 between 2 am and 6 am ET

Second Event
0 path1 starts

900 path2 starts
1800 path3 starts
2700 path4 starts
3600
4500 path2 finishes
5400 path3 finishes
6300 path4 finishes
7200 path1 finishes
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Overall test results

Baseline
Path Mb/s min rtt avg rtt max rtt
path1 286.100 58.751 61.419 1868.287
path2 938.460 44.250 62.850 802.687
path3 650.589 59.378 100.497 1600.684
path4 602.295 46.129 91.357 851.856

Concurrent
Path Mb/s min rtt avg rtt max rtt
path1 280.411 58.643 61.143 1111.416
path2 747.636 25.068 77.155 1090.875
path3 574.248 58.788 111.707 3604.343
path4 577.297 50.610 96.492 957.372
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Throughput of all paths (concurrent
experiment)

 0

 200

 400

 600

 800

 1000

 0

 9
00

 1
80

0

 2
70

0

 3
60

0

 4
50

0

 5
40

0

 6
30

0

 7
20

0

G
oo

dp
ut

, M
b/

s

Time since start of experiment, s

path4
path3
path2
path1

11



Minimum round-trip time of all paths
(concurrent experiment, user space)
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Average round-trip time of all paths (concurrent
experiment, user space)
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Round-trip time of path2 and path3 (concurrent
experiment, kernel space)

 0

 200

 400

 600

 800

 1000

 0

 9
00

 1
80

0

 2
70

0

 3
60

0

 4
50

0

 5
40

0

 6
30

0

 7
20

0

R
T

T
, m

s

Time since start of experiment, s

path2 avg
path3 avg

path2 base
path3 base

14



Bottleneck link utilization (from SNMP data)
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Observations

• Bottleneck link is congested

• Bottleneck link never loses even a single packet belonging to

the path1 flow

• path1 flow packets are not significantly delayed at bottleneck

• Internal queueing on all Linux paths

• More stable throughput on Linux at time of congestion
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Conclusions

• FAST TCP appears to allow bulk transfers that saturate the

link without affecting conventional traffic

– No QoS

– No AQM

• Linux (with or without FAST TCP patches) appears to build

up internal queues that affect TCP congestion control in a

profound manner
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Contact
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Source code
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